Skip to content
08 - Mathematical Induction & Binomial Theorem

Mathematical Induction & Binomial Theorem

An algebraic expression consisting of two terms such as \(a+x\), \(ax+b\) etc is called binomial or a binomial expression.

Binomial Formula

The following expressions are valid for any \(n\in Z^n\). (n is called index)

\[ (a+b)^n = a^n +\frac{n}{1!} a^{n-1} b^1+ \frac{n(n-1)}{2!} a^{n-2} b^2 + \frac{n(n-1)(n-2)}{3!} a^{n-3} b^3 +...+ b^n \]
\[ (a+b)^n = ^nC_0 a^n + ^nC_1 a^{n-1} b^1 + ^nC_2 a^{n-2} b^2 +...+ ^nC_r a^{n-r} b^r +...+^nC_n a^{n-n} b^n \]
\[ (a+b)^n = \displaystyle\sum_{r=0}^n \binom{n}{r} a^{n-r} b^r \]

Sum of Binomial Series

Characteristics of Binomial Expressions

  • The number of terms in the expansion is one greater than its index.
  • The sum of expansion of \(a\) and \(b\) in each term of the expansion is equal to its index.
  • The exponent of \(a\) decreases from index to zero.
  • The exponent of \(b\) increases form zero to index.
  • The coefficients of the term equidistant from beginning and end of the expansion are equal as \(^nC_r=^nC_{n-r}\)
  • The \(T_{r+1}\) is the \(r^{\text{th}}\) teem in the expansion of \((a+b)^n\) is given by $$ T_{r+1}= \binom{n}{r} a^{n-r} b^r $$
  • Middle term(s) in the expansion of \((a+b)^n\)
    • If \(n\) is even, then there is only one middle term \(\left( \frac{n+2}{2} \right)\)th term.
    • If n is odd, then there are two middle terms \(\left(\frac{n+1}{2}\right)\) and \(\left(\frac{n+3}{2}\right)\)
  • In the expansion $$ (a+b)n = an +\frac{n}{1!} a^{n-1} b^1+ \frac{n(n-1)}{2!} a^{n-2} b^2 + \frac{n(n-1)(n-2)}{3!} a^{n-3} b^3 +...+ b^n $$ \(^nC_0, ^nC_1, ^nC_2, ..., ^nC_n\) are called binomial coefficients.

Properties of binomial coefficients

In the expansion of \((1+x)^n\) where \(n\in N\)

  • Sum of binomial coefficients is \(2^n\) i.e. \(^nC_0, ^nC_1, ^nC_2, ..., ^nC_n=2^n\)
  • Sum of binomial coefficients of odd terms = Sum of binomial coefficients of even terms

Binomial Theorem When Index is Negative or Fraction

  • When n is negative integer or a fraction, and \(|x<1|\) then $$ (1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3+...+ \frac{n(n-1)(n-2)...(n-r+1)}{r!}x^r+...$$
  • The general term in the expansion is $$ T_{r+1}=\frac{n(n-1)(n-2)...(n-r+1)}{r!}x^r $$
  • The number of terms in the expansion is always infinite.

Some particular cases when \(n<0\)

Binomial Expansion \((r+1)^{\text{th}}\) term
\((1+x)^{-1}\) $$ (-1)^r x^r $$
\((1+x)^{-2}\) $$ (-1)^r (r+1) x^r$$
\((1+x)^{-3}\) $$ (-1)^r \frac{(r+1)(r+1)}{2}x^r $$
\((1-x)^{-1}\) $$ x^r $$
\((1-x)^{-2}\) $$ (r+1) x^r $$
\((1-x)^{-3}\) $$ \frac{(r+1)(r+1)}{2}x^r $$

Comments