Integration¶
- If \(\frac{dy}{dx}=f(x)\), then \(y\) is the function whose derivative is \(f(x)\) and is called the derivative of \(f(x)\) or indefinite integral of \(f(x)\), denoted by \(\int f(x)dx\)
- Similarly if \(y=\int f(x)dx\), then \(\frac{dy}{dx}=f(x)\)
- Since the derivative of a constant is zero, all indefinite integrals differ by an arbitrary constant.
- The process of finding an integral is called integration.
General formulas of Integration¶
\[ \int x^ndx=\frac{x^{n+1}}{n+1}+c,\;(n\rlap{/}{=}-1)n\in Q \]
\[ \int (ax+b)^ndx=\frac{(ax+b)^{n+1}}{a(n+1)}+c,\;(n\rlap{/}{=}-1) \]
\[ \int cf(x)dx=c\int f(x)dx,\; (c\text{ is a constant}) \]
\[ \int \frac{dx}{x}=\ln x +c \]
\[ \int e^x dx=e^x+c \]
\[ \int e^{mx}dx=\frac{e^{mx}}{m}+c \]
\[ \int a^xdx=\frac{a^x}{\ln a}+c, \; a>0 \]
Integration by parts: $$ \int (uv)dx=u\int v dx-\int \left( \frac{du}{dx} \int v dx \right)dx $$
Trigonometric Functions¶
- \(\int\sin xdx=-\cos x+c\)
- \(\int\cos xdx=\sin x+c\)
- \(\int\sec^2xdx=\tan x+c\)
- \(\int\csc^2xdx=-\cot x+c\)
- \(\int\sec x\tan xdx=\sec x+c\)
- \(\int\csc x\cot xdx=-\csc x+c\)
- \(\int\tan xdx=\ln|\sec x|+c\)
- \(\int\cot xdx=\ln|\sin x|+c\)
- \(\int\sec xdx=\ln|\sec x+\tan x|\)
- \(\int\csc xdx=\ln|\csc x-\cot x|\)