If \(A=[a_{ij}]_{3\times 4}\)\(B=[b_{ij}]_{4\times 3}\) then which of the follwoing is true?
</p><div><div class="md-radio "><input id="5-0" type="radio" name="5"><label for="5-0">\)\lambda A+\lambda B=\lambda(A+B)\)
If $$ \begin{bmatrix}
\alpha & 2 \
2 & \alpha
\end{bmatrix} $$ and \(|A|^3=125\) then \(\alpha=\)?
Ans: None
If $$ \begin{cases}
a_{11}x_1+a_{12}x_2+a_{13}x_3=b_1 \
a_{21}x_1+a_{22}x_2+a_{23}x_3=b_2 \
a_{31}x_1+a_{32}x_2+a_{33}x_3=b_3
\end{cases} $$ be a non=homogenous system and \(|A|\not = 0\) then which is true?
Ans: None
$$ \begin{vmatrix}
a & b & c \
d & e & f \
g & h & i
\end{vmatrix}=3 $$ then $$ \begin{vmatrix}
2a & 2b & 2c \
2d & 2e & 2f \
2g & 2h & 2i
\end{vmatrix}= \(\(?
</p><div><div class="md-radio "><input id="10-0" type="radio" name="10"><label for="10-0">\)3\)
Ans: None
$$ \begin{bmatrix}
p & o & o \
o & p & o
\end{bmatrix} $$ is called _______ matrix?
Ans: None
The order of $$ \begin{bmatrix} p & q & r \end{bmatrix} \begin{bmatrix}
a & b & c \
d & e & t \
g & h & i
\end{bmatrix} \begin{bmatrix}
l & o \
m & p\
n & q
\end{bmatrix} $$ is
Ans: None
If $$ \begin{vmatrix}
a & b & c \
d & e & f\
g & h & i
\end{vmatrix} = 7 $$ then $$ \begin{vmatrix}
a+d & b+e & c+f \
d & e & f\
g & h & i
\end{vmatrix} = \(\(?
</p><div><div class="md-radio "><input id="13-0" type="radio" name="13"><label for="13-0">\)7\)
Ans: None
The matrix $$ \begin{bmatrix}
0 & 8 & 9 \
-8 & 0 & 15\
-9 & -15 & 0
\end{bmatrix} $$ is known as
Ans: None
The equations \(x+4y-2z=3\), \(3x+y+5z=7\), \(2x+3y+2z=5\) have
If \(A\) is \(3\times4\) matrix, \(B\) is a matrix such that \(AB\) and \(BA\) both are defined then order of matrix \(B\) is?
</p><div><div class="md-radio "><input id="17-0" type="radio" name="17"><label for="17-0">\)3\times4\)
Ans: None
The equations \(x+2y+3z=0\), \(x-y+4z=0\) and \(2x+y+7z=0\) have
Ans: None
The transpose operation on matrices statisfies the following properties except
Ans: None
If \(A\) and \(B\) are square matrices of same order such that \((A+B)^2= A^2 + 2AB + B^2\) Then
If \(A\) and \(B\) are two matrices such that \(A + B\) and \(AB\) are defined then.
</p><div><div class="md-radio "><input id="23-0" type="radio" name="23"><label for="23-0">\)A\) and \(B\) are two matrices not necessarily of same order
Ans: \(A\) and \(B\) are square matrices of same order
If $$ \begin{bmatrix}
4 & 3 \
2 & 1
\end{bmatrix} \begin{bmatrix}
1 & y \
x & -1
\end{bmatrix} = \begin{bmatrix}
4 & 5 \
2 & 3
\end{bmatrix} $$ then \(x+y=\)?
Ans: \(2\)
If the matrix \(AB\) is zero then
Ans: None
What is called a matrix of order \(m\times1\)
Ans: None
If \(A\) and \(B\) are two square matrices of same order. Then \((A+B)^2 =\)?
Ans: \(A^2+2BA+B^2\)
If \(A,B,C\) are three matrices such that $AB = AC \implies B = C $ then A is
Ans: None
If A and B are non-singular matrices Then \((AB)^{-1}=\)
Ans: None
Minors and co–factors of the elements in a determinant are in equal magnitude but they may differ in
Ans: None
If each element of a \(3\times3\) matrix \(A\) is multiplied by \(3\) then the determinant of the resulting matrix is?
Ans: \(3|A|\)
The system of equations \(x+2y=5\) and \(-3x-6y=15\) has
Ans: No Solution
For homogenous linear equations, system \(AX=0\) has non-trivial solution if \(|A|=\)
Ans: None
If a matrix \(A\) with real entries then \(overline{A}=\)
Ans: \(A\)
Which matrix can be rectangular matrix?
Ans: None
If $$ A = \begin{bmatrix}
1 & 0 & -1 & 2 \
3 & 1 & 2 & 5 \
0 & -2 & 1 & 6
\end{bmatrix} $$, $$ A = \begin{bmatrix}
2 & -1 & 3 & 1 \
1 & 3 & -1 & 4 \
3 & 1 & 2 & -1
\end{bmatrix} $$ then \((2,3)\)rd element of \((A+B)^t\) is
Ans: \(-1\)
If \(A=[a_{ij}]_{m\times n}\), \(B=[b_{ij}]_{n\times r}\) then order of \((AB)^t\) is
Ans: \(m\times r\)
Which one is not symmetric?
Ans: \(AA^t\)
\(AB\) is symmetric if
Ans: all of above
The co factor of an element \(a_{ij}\) denoted by \(A_{ij}\) is?
If $$ P = \begin{bmatrix}
3 & 0 & 0 \
0 & 3 & 0 \
0 & 0 & 3
\end{bmatrix} $$ then \(P^4\)
Ans: None of these
The system \(3a + 5b = 6\), \(9a + 15b = 12\) has __________ Solution
Ans: No solution
If $$ A = \begin{bmatrix}
4 & 2 \
0 & 3
\end{bmatrix} $$, $$ B = \begin{bmatrix}
\frac{1}{4} & s \
0 & \frac{1}{3}
\end{bmatrix} $$ then value of \(s\) such that \(AB=I\) is
If $$ \begin{vmatrix}
l & m & n \
o & p & q \
r & s & t
\end{vmatrix} = 30 $$ then $$ \begin{vmatrix}
l & o & r \
m & p & s \
n & q & t
\end{vmatrix} $$
Ans: \(30\)
If If \(a\), \(b\), \(c\) are positive real numbers other than one and \(a = b = c\) then $$ \begin{vmatrix}
\log_ab & \log_ac & 1 \
\log_bc & \log_ba & 1 \
1 & \log_ca & \log_cb \
\end{vmatrix} $$