Skip to content
01 - Number System

Number System

Decimal Representation of Real Numbers

Terminating Decimals

A Decimal having finite number of digits in its decimal part. These are Rational numbers.

Example

  • \(434.8888881\)
  • \(686.67482\)
  • \(749.6428\)

Non Terminating Decimals

A decimal having infinite number of digits in its decimal part. These are non rational numbers.

  • \(3.145291....\)
  • \(46.2394737423....\)

Recurring Decimals or Periodic Decimals

A decimal in which one or more digits repeat indefinitely. These are Rational Numbers.

Example

  • \(3.1311313131\)
  • \(1.1211211211\)

Real Numbers

Properties

Property Addition Multiplication
Closure Law \(\forall x,y\in R, x+y\in R\) \(\forall x,y \in R, x\cdotp y \in R\)
Associative Law \(\forall x,y,z\in R, x+(y+z)=(x+y)+z\) \(\forall x,y,z\in R, x(yz)=(xy)z\)
Identity Law \(\forall x \in R, \exists0\in R\) such that \(x+0=0+x=x\), 0 is identity element of addition. \(\forall x \in R, \exists1\in R\) such that \(x.1=1.x=x\), 1 is identity element of addition.
Inverse Property \(\forall x\in R, \exists(-x)\in R\) sucth that \(x+(-x)=(-x)+x=0\) \(\forall x\in R, \exists(x^{-1})\in R\) sucth that \(x(x^{-1})=(x^{-1})x=1\)
Commutative Law \(\forall x,y\in R, x+y=y+x\) \(\forall x,y \in R, xy=yx\)

Equality

Property Definition
Reflexive Property \(\forall x\in R, x=x\)
Symmetric Property \(\forall x,y\in R, x=y\implies y=x\)
Transitive Property \(\forall x,y\in R\)
\(x=y\land y=z\implies x=z\)
Additive Property \(\forall x,y,z\in R, x=y\implies x+z=y+z\)
Multiplication Property \(\forall x,y,z\in R x=y\implies x.z=y.z\)
Cancellation Property wrt addition \(\forall x,y,x\in R, x+z=y+z\implies x=y\)
Cancellation Property wrt Multiplication \(\forall x,y,x\in R, x.z=y.z\implies x=y\), \(z\rlap{/}{=}0\)

Inequality

Property Definition
Trichotomy Property \(\forall x,y\in R\) either
  • \(x=y\)
  • \(x<y\)
  • \(x>y\)
Transition Property \(\forall x,y,z\in R\)
  • \(x>y \land y>z\implies x>z\)
  • \(x<y \land y<z\implies x<z\)
Addition Property \(\forall x,y,z\in R\)
  • \(x>y\implies x+z>y+z\)
  • \(x<y\implies x+z<y+z\)
Multiplication Property \(\forall x,y,z\in R\)
  • \(x>y\implies x.z>y.z\) (\(z>0\))
  • \(x>y\implies x.z<y.z\) (\(z<0\))

Fraction

Property Definition
Principle for equality of fractions $$ \frac{a}{b}=\frac{c}{d} \iff ad=bc $$
Rule for Product of fractions $$ \frac{a}{b} \cdotp \frac{c}{d}=\frac{ac}{bd} $$
Golden rule of fractions $$ \frac{a}{b}=\frac{ka}{kb}\;\;(k\rlap{/}{=}0) $$
Rule for quotient of fractions $$ \frac{\frac{a}{b}}{\frac{c}{d}}=\frac{ad}{bc} $$

Complex Numbers

  • The numbers of the form \(x+iy\) where \(x,y\in R\) are called complex numbers. The complex numbers are denoted by \(C\).
  • \(x+iy=(x,y)\), where \(x\) is called real part and \(y\) is called imaginary part of complex number.
  • Every real number is complex number with zero as its imaginary part.
  • Set of Real number is a special subset of complex number
  • \(\sqrt{-a}\times\sqrt{-b}=\) \((i\sqrt{a})\times(i\sqrt{b})=\) \(i^2\sqrt{ab}=-\sqrt{ab}\).
  • Each imaginary number (\(ib\)) is complex number(\(a+ib\)) but each complex number(\(a+ib\)) not an imaginary number(\(ib\)).
  • Imaginary numbers are also called pure complex numbers.
  • Sum of four consecutive power of iota is always zero.
  • Sum and product of two conjugate numbers are always real number.

Powers of \(i\):

  • \(i=\sqrt{-1}\)
  • \(i^2=-1\)
  • \(i^3=-i\)
  • \(i^4=1\)
  • \(i^{4n}=1\) where \(n\in Z\)
  • \(i^n+i^{n+1}+i^{n+2}+i^{n+3}=0\), \(n\in Z\)
  • \(\frac{1}{i}=i^{-1}=-i\)
  • \(i^i=e^{-\pi/2}\)
  • \(e^{ix}=\cos x+i\sin x\)

Solving \(i\) Powers

  • If power is between \(1-4\) use above rules.
  • If power is greater then \(4\) divide it with 4 and use above rules.
  • If power is too large like \(10000000004\) add all the digits and follow above rules.

Tip

  • If power of \(i\) is even it must be \(1\) or \(-1\).
  • If power of \(i\) is odd it must be equal to \(i\) or \(-i\)
  • If power of \(i\) is multiple of 4 then it must equal to \(1\).

Operations

Operation Definition
Equality of Complex Numbers \(a+ib=c+id\implies a=c\land b=d\)
Addition of Complex Numbers \(a+ib+c+id=(a+c)+(b+d)i\)
\((a,b)+(c,d)=(a+c, b+d)\)
Scalar multiplication of complex numbers \(k(a+ib)=ka+ikb\)
Multiplication of Complex numbers \((a+ib)(c+ib)=(ac-bd)+(ad+bc)i\)
Division of Complex numbers $$ \frac{(a,b)}{(c,d)}=\left(\frac{ac+bd}{c^2 + d^2}, \frac{bc-ad}{c^2 + d^2}\right) $$
Reciprocal or Multiplicative Inverse $$ \frac{1}{z}=\frac{a-bi}{a^2 + b^2} $$
Square Root for \(z=a+bi\) $$ \pm\left(\sqrt{\frac{|z|+a}{2}}+ i \sqrt{\frac{|z|-a}{2}}\right)\;\; (b>0) $$ $$ \pm\left(\sqrt{\frac{|z|+a}{2}}- i \sqrt{\frac{|z|-a}{2}}\right)\;\; (b<0) $$
Logarithm \(\log(z)=\log\vert z\vert+i\;arg(z)\)

Tip

Multiplicative inverse of a Complex number can also be found by: $$ z{-1} = \left(\frac{Re(z)}{|z|2}, -\frac{Im(z)}{|z|^2} \right) $$

Properties

Operation Addition Multiplication
Identity Property \((0,0)=9+0i\) \((1,0)=1+0i\)
Inverse Property \(\forall (a,b)\in C\) has additive inverse \((-a,-b)\) \((a,b)\) as non-zero complex number has multiplicative inverse $$ \left( \frac{a}{a^2 +b^2}, \frac{-b}{a^2 +b^2} \right) $$
Distributive PropertyMultiplication is distributive over addition in \(C\) $$ (a,b)[(c,d)\pm(e,f)]=(a,b)(c,d)\pm(a,b)(e,f) $$

Conjugate of Complex Number

  • Let \(Z\) denotes a complex number then \(Z=x+iy=(x,y)\) then conjugate of \(Z\) is denoted by \(\bar{Z}\) and is defined as \(\bar{Z}=x-iy=(x,-y)\).

Properties

\(\forall z, z_1, z_2\in C\):

  • \(\overline{(\overline{z})}=z\)
  • \(z.\overline{z}=|z|^2\)
  • \(\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}\)
  • \(\overline{z_1-z_2}=\overline{z_1}-\overline{z_2}\)
  • \(\overline{z_1.z_2}=\overline{z_1}.\overline{z_2}\)
  • $$ \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}\;\;(z_2\rlap{/}{=}0) $$
  • $$ \frac{1}{z}=\frac{\bar{z}}{|z|^2} \;\;(z\rlap{/}{=}0) $$

Modulus & Argument of a Complex Number

Let \(Z=x+iy=(x,y)\) then:

  • Modulus of \(Z=|Z|=\sqrt{x^2+y^2}\)
  • Argument of $$ Z=arg\;Z=\tan^{-1}\left(\frac{y}{x}\right) $$
  • Argument is also called Amplitude.

Properties of Argument

  • Nature of argument is just like logarithmic function.
  • \(arg(z_1.z_2)=arg(z_1)+arg(z_2)\)
  • $$ arg\left(\frac{z_1}{z_2}\right)=arg(z_1)-arg(z_2) $$
  • $$ arg(\overline{z})=-arg(z)=arg\left(\frac{1}{z}\right) $$
  • \(arg(z.\bar{z})\)
  • $$ arg\left(\frac{z}{\bar{z}}\right) =2arg(z) $$
  • \(Aarg(z^n)=n\; arg(z)\)

Properties of Modulus

  • \(|z|=|-z|=|\overline{z}|=|-\overline{z}|\)
  • \(z.\bar{z}=|z|^2\)
  • \(|z^n|=|z|^2\)
  • \(|z_1.z_2|=|z_1|.|z_2|\)
  • \(|z_1/z_2|=|z_1|/|z_2|\)
  • \(|z_1|-|z_2|\le|z_1+z_2|\le|z_1|+|z_2|\) (Triangular inequality).

Graphical Representation of Complex Numbers:

Since a complex number is considered as an order pair of real numbers, so we can represent such numbers by points in a xy-plane (Cartesian plan) which is called complex plane or Argand Diagram.

Info

In order pair \((a,b)\)

  • \(a\) is called x-coordinate or abscissa
  • \(b\) is called y-coordinate or ordinate

Principle Argument of a Complex Number

Let \(\theta\) be the principle argument of a complex number \(x+iy\) defined in range \(-\pi<\theta\le\pi\) such that:

  • In 1st Quadrant $$ \theta=\tan^{-1} \left(\frac{y}{x}\right) $$
  • In 2nd Quadrant $$ \theta=\pi-\tan^{-1} \left(\frac{y}{|x|}\right) $$
  • In 3rd Quadrant $$ \theta=\tan^{-1} \left(\frac{|y|}{|x|}\right)-\pi $$
  • In 4th Quadrant $$ \theta=-\tan^{-1} \left(\frac{|y|}{x}\right)-\pi $$

Polar Form of Complex Numbers

Since every complex number \(x+iy\) can be represented in the form of a point \((x,y)\), so we can express every complex number in the form of polar coordinates \((r,\theta)\), where \(r=\sqrt{x^2+y^2}\) and \(\theta=\tan^{-1}(y/x)\)

  • \(x+iy=r\cos\theta+ir\sin\theta\)
  • To convert polar coordinates into Cartesian coordinates replace \((r, \theta)\) into \((r\cos\theta, r\sin\theta)\)

De Moivre's Theorem

\[ (\cos\theta+i\sin\theta)^n=\cos n\theta+i\sin n\theta,\;\;\forall n\in Z \]
  • It can be used to solve powers of Complex Numbers.

Applications

  • $$ (Z){1/n} = r{1/n} \left(\cos\frac{\theta+2\pi k}{n} + i\sin\frac{\theta+2\pi k}{n} \right) $$ where \(k=0,1,2,...(n-1)\). This formula is used to find the nth root of a complex number.
  • \(Z_1.Z_2=r_1r_2\left(\cos(\theta_1+\theta_2)+i\sin(\theta_1+\theta_2)\right)\)
  • $$ \frac{Z_1}{Z_2}=\frac{r_1}{r_2}(\cos(\theta_1-\theta_2)+i\sin(\theta_1-\theta_2)) $$
  • Complex numbers do not hold order axioms.

Locus of a Complex Number

A Complex number can form following in a Cartesian Plane:

  • Circle if \(|z|=1\)
  • Parabola if \(k=|z\pm z_1|\)
  • Circle if $$ \frac{z-z_1}{z-z_2}\rlap{/}{=}1 $$
  • Line if $$ \frac{z-z_1}{z-z_2}=1 $$
  • \(|z-z_1|+|z-z_2|=k\)
    • Ellipse if \(k>|z_1-z_2|\)
    • No locus if \(k<|z_1-z_2|\)
    • Line if \(k=|z_1-z_2|\)
  • \(|z-z_1|-|z-z_2|=k\)
    • No locus if \(k>|z_1-z_2|\)
    • Hyperbola if \(k<|z_1-z_2|\)
    • Line \(k=|z_1-z_2|\)

Comments