Number System¶
Decimal Representation of Real Numbers¶
Terminating Decimals¶
A Decimal having finite number of digits in its decimal part. These are Rational numbers.
Example¶
- \(434.8888881\)
- \(686.67482\)
- \(749.6428\)
Non Terminating Decimals¶
A decimal having infinite number of digits in its decimal part. These are non rational numbers.
- \(3.145291....\)
- \(46.2394737423....\)
Recurring Decimals or Periodic Decimals¶
A decimal in which one or more digits repeat indefinitely. These are Rational Numbers.
Example¶
- \(3.1311313131\)
- \(1.1211211211\)
Real Numbers¶
Properties¶
Property | Addition | Multiplication |
---|---|---|
Closure Law | \(\forall x,y\in R, x+y\in R\) | \(\forall x,y \in R, x\cdotp y \in R\) |
Associative Law | \(\forall x,y,z\in R, x+(y+z)=(x+y)+z\) | \(\forall x,y,z\in R, x(yz)=(xy)z\) |
Identity Law | \(\forall x \in R, \exists0\in R\) such that \(x+0=0+x=x\), 0 is identity element of addition. | \(\forall x \in R, \exists1\in R\) such that \(x.1=1.x=x\), 1 is identity element of addition. |
Inverse Property | \(\forall x\in R, \exists(-x)\in R\) sucth that \(x+(-x)=(-x)+x=0\) | \(\forall x\in R, \exists(x^{-1})\in R\) sucth that \(x(x^{-1})=(x^{-1})x=1\) |
Commutative Law | \(\forall x,y\in R, x+y=y+x\) | \(\forall x,y \in R, xy=yx\) |
Equality¶
Property | Definition |
---|---|
Reflexive Property | \(\forall x\in R, x=x\) |
Symmetric Property | \(\forall x,y\in R, x=y\implies y=x\) |
Transitive Property | \(\forall x,y\in R\) \(x=y\land y=z\implies x=z\) |
Additive Property | \(\forall x,y,z\in R, x=y\implies x+z=y+z\) |
Multiplication Property | \(\forall x,y,z\in R x=y\implies x.z=y.z\) |
Cancellation Property wrt addition | \(\forall x,y,x\in R, x+z=y+z\implies x=y\) |
Cancellation Property wrt Multiplication | \(\forall x,y,x\in R, x.z=y.z\implies x=y\), \(z\rlap{/}{=}0\) |
Inequality¶
Property | Definition |
---|---|
Trichotomy Property | \(\forall x,y\in R\) either
|
Transition Property | \(\forall x,y,z\in R\)
|
Addition Property | \(\forall x,y,z\in R\)
|
Multiplication Property | \(\forall x,y,z\in R\)
|
Fraction¶
Property | Definition |
---|---|
Principle for equality of fractions | $$ \frac{a}{b}=\frac{c}{d} \iff ad=bc $$ |
Rule for Product of fractions | $$ \frac{a}{b} \cdotp \frac{c}{d}=\frac{ac}{bd} $$ |
Golden rule of fractions | $$ \frac{a}{b}=\frac{ka}{kb}\;\;(k\rlap{/}{=}0) $$ |
Rule for quotient of fractions | $$ \frac{\frac{a}{b}}{\frac{c}{d}}=\frac{ad}{bc} $$ |
Complex Numbers¶
- The numbers of the form \(x+iy\) where \(x,y\in R\) are called complex numbers. The complex numbers are denoted by \(C\).
- \(x+iy=(x,y)\), where \(x\) is called real part and \(y\) is called imaginary part of complex number.
- Every real number is complex number with zero as its imaginary part.
- Set of Real number is a special subset of complex number
- \(\sqrt{-a}\times\sqrt{-b}=\) \((i\sqrt{a})\times(i\sqrt{b})=\) \(i^2\sqrt{ab}=-\sqrt{ab}\).
- Each imaginary number (\(ib\)) is complex number(\(a+ib\)) but each complex number(\(a+ib\)) not an imaginary number(\(ib\)).
- Imaginary numbers are also called pure complex numbers.
- Sum of four consecutive power of iota is always zero.
- Sum and product of two conjugate numbers are always real number.
Powers of \(i\):¶
- \(i=\sqrt{-1}\)
- \(i^2=-1\)
- \(i^3=-i\)
- \(i^4=1\)
- \(i^{4n}=1\) where \(n\in Z\)
- \(i^n+i^{n+1}+i^{n+2}+i^{n+3}=0\), \(n\in Z\)
- \(\frac{1}{i}=i^{-1}=-i\)
- \(i^i=e^{-\pi/2}\)
- \(e^{ix}=\cos x+i\sin x\)
Solving \(i\) Powers¶
- If power is between \(1-4\) use above rules.
- If power is greater then \(4\) divide it with 4 and use above rules.
- If power is too large like \(10000000004\) add all the digits and follow above rules.
Tip
- If power of \(i\) is even it must be \(1\) or \(-1\).
- If power of \(i\) is odd it must be equal to \(i\) or \(-i\)
- If power of \(i\) is multiple of 4 then it must equal to \(1\).
Operations¶
Operation | Definition |
---|---|
Equality of Complex Numbers | \(a+ib=c+id\implies a=c\land b=d\) |
Addition of Complex Numbers | \(a+ib+c+id=(a+c)+(b+d)i\) \((a,b)+(c,d)=(a+c, b+d)\) |
Scalar multiplication of complex numbers | \(k(a+ib)=ka+ikb\) |
Multiplication of Complex numbers | \((a+ib)(c+ib)=(ac-bd)+(ad+bc)i\) |
Division of Complex numbers | $$ \frac{(a,b)}{(c,d)}=\left(\frac{ac+bd}{c^2 + d^2}, \frac{bc-ad}{c^2 + d^2}\right) $$ |
Reciprocal or Multiplicative Inverse | $$ \frac{1}{z}=\frac{a-bi}{a^2 + b^2} $$ |
Square Root | for \(z=a+bi\) $$ \pm\left(\sqrt{\frac{|z|+a}{2}}+ i \sqrt{\frac{|z|-a}{2}}\right)\;\; (b>0) $$ $$ \pm\left(\sqrt{\frac{|z|+a}{2}}- i \sqrt{\frac{|z|-a}{2}}\right)\;\; (b<0) $$ |
Logarithm | \(\log(z)=\log\vert z\vert+i\;arg(z)\) |
Tip
Multiplicative inverse of a Complex number can also be found by: $$ z{-1} = \left(\frac{Re(z)}{|z|2}, -\frac{Im(z)}{|z|^2} \right) $$
Properties¶
Operation | Addition | Multiplication |
---|---|---|
Identity Property | \((0,0)=9+0i\) | \((1,0)=1+0i\) |
Inverse Property | \(\forall (a,b)\in C\) has additive inverse \((-a,-b)\) | \((a,b)\) as non-zero complex number has multiplicative inverse $$ \left( \frac{a}{a^2 +b^2}, \frac{-b}{a^2 +b^2} \right) $$ |
Distributive Property | Multiplication is distributive over addition in \(C\) $$ (a,b)[(c,d)\pm(e,f)]=(a,b)(c,d)\pm(a,b)(e,f) $$ |
Conjugate of Complex Number¶
- Let \(Z\) denotes a complex number then \(Z=x+iy=(x,y)\) then conjugate of \(Z\) is denoted by \(\bar{Z}\) and is defined as \(\bar{Z}=x-iy=(x,-y)\).
Properties¶
\(\forall z, z_1, z_2\in C\):
- \(\overline{(\overline{z})}=z\)
- \(z.\overline{z}=|z|^2\)
- \(\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}\)
- \(\overline{z_1-z_2}=\overline{z_1}-\overline{z_2}\)
- \(\overline{z_1.z_2}=\overline{z_1}.\overline{z_2}\)
- $$ \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}\;\;(z_2\rlap{/}{=}0) $$
- $$ \frac{1}{z}=\frac{\bar{z}}{|z|^2} \;\;(z\rlap{/}{=}0) $$
Modulus & Argument of a Complex Number¶
Let \(Z=x+iy=(x,y)\) then:
- Modulus of \(Z=|Z|=\sqrt{x^2+y^2}\)
- Argument of $$ Z=arg\;Z=\tan^{-1}\left(\frac{y}{x}\right) $$
- Argument is also called Amplitude.
Properties of Argument¶
- Nature of argument is just like logarithmic function.
- \(arg(z_1.z_2)=arg(z_1)+arg(z_2)\)
- $$ arg\left(\frac{z_1}{z_2}\right)=arg(z_1)-arg(z_2) $$
- $$ arg(\overline{z})=-arg(z)=arg\left(\frac{1}{z}\right) $$
- \(arg(z.\bar{z})\)
- $$ arg\left(\frac{z}{\bar{z}}\right) =2arg(z) $$
- \(Aarg(z^n)=n\; arg(z)\)
Properties of Modulus¶
- \(|z|=|-z|=|\overline{z}|=|-\overline{z}|\)
- \(z.\bar{z}=|z|^2\)
- \(|z^n|=|z|^2\)
- \(|z_1.z_2|=|z_1|.|z_2|\)
- \(|z_1/z_2|=|z_1|/|z_2|\)
- \(|z_1|-|z_2|\le|z_1+z_2|\le|z_1|+|z_2|\) (Triangular inequality).
Graphical Representation of Complex Numbers:¶
Since a complex number is considered as an order pair of real numbers, so we can represent such numbers by points in a xy-plane (Cartesian plan) which is called complex plane or Argand Diagram.
Info
In order pair \((a,b)\)
- \(a\) is called x-coordinate or abscissa
- \(b\) is called y-coordinate or ordinate
Principle Argument of a Complex Number¶
Let \(\theta\) be the principle argument of a complex number \(x+iy\) defined in range \(-\pi<\theta\le\pi\) such that:
- In 1st Quadrant $$ \theta=\tan^{-1} \left(\frac{y}{x}\right) $$
- In 2nd Quadrant $$ \theta=\pi-\tan^{-1} \left(\frac{y}{|x|}\right) $$
- In 3rd Quadrant $$ \theta=\tan^{-1} \left(\frac{|y|}{|x|}\right)-\pi $$
- In 4th Quadrant $$ \theta=-\tan^{-1} \left(\frac{|y|}{x}\right)-\pi $$
Polar Form of Complex Numbers¶
Since every complex number \(x+iy\) can be represented in the form of a point \((x,y)\), so we can express every complex number in the form of polar coordinates \((r,\theta)\), where \(r=\sqrt{x^2+y^2}\) and \(\theta=\tan^{-1}(y/x)\)
- \(x+iy=r\cos\theta+ir\sin\theta\)
- To convert polar coordinates into Cartesian coordinates replace \((r, \theta)\) into \((r\cos\theta, r\sin\theta)\)
De Moivre's Theorem¶
- It can be used to solve powers of Complex Numbers.
Applications¶
- $$ (Z){1/n} = r{1/n} \left(\cos\frac{\theta+2\pi k}{n} + i\sin\frac{\theta+2\pi k}{n} \right) $$ where \(k=0,1,2,...(n-1)\). This formula is used to find the nth root of a complex number.
- \(Z_1.Z_2=r_1r_2\left(\cos(\theta_1+\theta_2)+i\sin(\theta_1+\theta_2)\right)\)
- $$ \frac{Z_1}{Z_2}=\frac{r_1}{r_2}(\cos(\theta_1-\theta_2)+i\sin(\theta_1-\theta_2)) $$
- Complex numbers do not hold order axioms.
Locus of a Complex Number¶
A Complex number can form following in a Cartesian Plane:
- Circle if \(|z|=1\)
- Parabola if \(k=|z\pm z_1|\)
- Circle if $$ \frac{z-z_1}{z-z_2}\rlap{/}{=}1 $$
- Line if $$ \frac{z-z_1}{z-z_2}=1 $$
- \(|z-z_1|+|z-z_2|=k\)
- Ellipse if \(k>|z_1-z_2|\)
- No locus if \(k<|z_1-z_2|\)
- Line if \(k=|z_1-z_2|\)
- \(|z-z_1|-|z-z_2|=k\)
- No locus if \(k>|z_1-z_2|\)
- Hyperbola if \(k<|z_1-z_2|\)
- Line \(k=|z_1-z_2|\)